Abstract
The mechanisms for water exchange on [Zn(L)H2O]2+⋅H2O (L = tren: tris(2-aminoethyl)amine, trep: tris(2-phosphinoethyl)phosphine, and tres: tris(2-arsinoethyl)arsine) were studied using density functional theory (B3LYP/6-311 + G**) and evaluated by MP2 and B3LYP(PCM) energy calculations. The activation barriers for the water exchange reaction on [Zn(L)H2O]2+⋅H2O (L = tren, trep and tres) are (B3LYP/6-311 + G**) 9.9, 10.13 and 11.23 kcal mol−1, respectively. Topological analyses of the investigated ground state complexes were performed. The energy and structural data support an associative interchange (Ia) water exchange pathway.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have