Abstract

The oxygen reduction reaction (ORR) at undoped and nitrogen-doped carbon nanotubes (CNTs and N-CNTs, respectively) was studied by cyclic voltammety, rotating disk electrode voltammetry, and gasometric analysis in neutral and alkaline aqueous solutions. At undoped CNTs, the ORR proceeds by two successive two-electron processes with hydroperoxide (HO2–) as the intermediate. At N-CNTs, the ORR occurs through a “pseudo”-four-electron pathway involving a catalytic regenerative process in which hydroperoxide is chemically disproportionated to form hydroxide (OH–) and molecular oxygen (O2). The ORR mechanism at both undoped and N-doped varieties is supported by steady state polarization and gasometric measurements of hydroperoxide disproportionation rates. An enhancement of over 1000-fold for hydroperoxide disproportionation is observed for N-CNTs, with rates comparable to the best known peroxide decomposition catalysts. A positive correlation between nitrogen content and ORR activities is observed where the ORR...

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.