Abstract

Nitrogen-doped and undoped carbon nanotubes (CNTs) were synthesized from ferrocene, nickelocene, and cobaltocene metal catalysts. Electrochemical testing for an oxygen reduction reaction (ORR) showed that nitrogen-doped CNTs synthesized from ferrocene had improved catalytic activity while nanotubes synthesized from nickelocene and cobaltocene, doped with a comparable amount of nitrogen and having similar stacked-cups structure as nitrogen doped CNTs from ferrocene, had a performance only slightly better than that of undoped CNTs. Ferrocene-based nitrogen-doped CNTs also demonstrated similar long-term stability and higher CO tolerance compared to Pt/C catalyst. Detailed ORR mechanisms were also studied and carbon nanomaterials showed different ORR processes as a result of the metal catalyst utilized in the chemical synthesis. Nitrogen-doped and undoped CNTs synthesized from nickelocene show a preferential 4-electron process as compared to materials synthesized from ferrocene and cobaltocene. We believe that the metal used in the growth process regulates the mechanism of oxygen reduction and can be used to develop improved nitrogen-doped carbon nanomaterials as nonprecious-metal catalysts for fuel cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.