Abstract

BackgroundProtein disulfide isomerase (PDI) is a promising target for combating thrombosis. Extensive research over the past decade has identified numerous PDI-targeting compounds. However, limited information exists regarding how these compounds control PDI activity, which complicates further development. ObjectivesTo define the mechanism of action of 2 allosteric antithrombotic compounds of therapeutic interest, quercetin-3-O-rutinoside and bepristat-2a. MethodsA multipronged approach that integrates single-molecule spectroscopy, steady-state kinetics, single-turnover kinetics, and site-specific mutagenesis. ResultsPDI is a thiol isomerase consisting of 2 catalytic a domains and 2 inactive b domains arranged in the order a-b-b'-a'. The active sites CGHC are located in the a and a' domains. The binding site of quercetin-3-O-rutinoside and bepristat-2a is in the b' domain. Using a library of 9 Förster resonance energy transfer sensors, we showed that quercetin-3-O-rutinoside and bepristat-2a globally alter PDI structure and dynamics, leading to ligand-specific modifications of its shape and reorientation of the active sites. Combined with enzyme kinetics and mutagenesis of the active sites, Förster resonance energy transfer data reveal that binding of quercetin-3-O-rutinoside results in a twisted enzyme with reduced affinity for the substrate. In contrast, bepristat-2a promotes a more compact conformation of PDI, in which a greater enzymatic activity is achieved by accelerating the nucleophilic step of the a domain, leading to faster formation of the covalent enzyme–substrate complex. ConclusionThis work reveals the mechanistic basis underlying PDI regulation by antithrombotic compounds quercetin-3-O-rutinoside and bepristat-2a and points to novel strategies for furthering the development of PDI-targeting compounds into drugs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.