Abstract
Neurotoxic implications of the interactions between Cu(I/II) and amyloid-β (Aβ) indicate a connection between amyloid cascade hypothesis and metal ion hypothesis with respect to the neurodegeneration associated with Alzheimer's disease (AD). Herein, we report a mechanistic strategy for modifying the first coordination sphere of Cu(II) bound to Aβ utilizing a rationally designed peptide modifier, L1. Upon reacting with L1, a metal-binding histidine (His) residue, His14, in Cu(II)-Aβ was modified through either covalent adduct formation, oxidation, or both. Consequently, the reactivity of L1 with Cu(II)-Aβ was able to disrupt binding of Cu(II) to Aβ and result in chemically modified Aβ with altered aggregation and toxicity profiles. Our molecular-level mechanistic studies revealed that such L1-mediated modifications toward Cu(II)-Aβ could stem from the molecule's ability to 1) interact with Cu(II)-Aβ and 2) foster copper-O2 chemistry. Collectively, our work demonstrates the development of an effective approach to modify Cu(II)-Aβ at a metal-binding amino acid residue and consequently alter Aβ's coordination to copper, aggregation, and toxicity, supplemented with an in-depth mechanistic perspective regarding such reactivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.