Abstract

The availability of PET neuroimaging tools for the in-vivo assessment of metabolic dysfunction and amyloid burden in Alzheimer's disease has opened important methodological and practical issues in the diagnostic design and the conduct of new clinical trials. This review, addressing the different molecular information that the amyloid-PET and fluorodeoxyglucose-PET (FDG-PET) tools can provide, highlights their diverging paths in Alzheimer's disease and possible new perspectives in research and clinical applications. Senile plaques and neurofibrillary tangles are prominent neuropathological hallmarks in Alzheimer's disease and are considered to be targets for therapeutic intervention and biomarkers for diagnostic in-vivo imaging agents. Alzheimer's disease is a slowly progressing disorder, in which pathophysiological abnormalities, detectable in vivo by PET biomarkers, precede clinical symptoms by many years to decades. The unitary view of Alzheimer's disease as a sequential pathological pathway, with beta-amyloid (Aβ) as the only initial and causal event (the 'amyloid cascade hypothesis'), is likely to be progressively replaced by a more complex picture, also on the basis of recent PET imaging findings showing that neuronal injury biomarkers and tau pathology can be independent of β-amyloid deposition. The different molecular paths that PET in-vivo biomarkers can reveal in the timeframe of Alzheimer's disease progression reflect the events leading to deposition of Aβ and phosphorylated tau, neuronal injury and neurodegeneration, which can run in parallel instead of in a sequential manner. The amyloid and neuronal injury paths may diverge along the Alzheimer's disease cascade and bear separate relationships with Alzheimer's disease symptoms and clinical phenotypes. All these evidences are crucial for the diagnosis and the development of new drugs aimed at slowing or preventing dementia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.