Abstract

Mechanistic and stereoselective based in vitro metabolism assays were utlilized to gain insight into the toxic mode of action of the 1,2,4-triazole fungicide, triadimefon, with black fly (Diptera: Simuliidae) larvae. Based on results from enzyme inhibitor studies, the metabolism of triadimefon in black fly larvae microsomes was found to occur predominantly via an oxidative P450-mediated pathway; triadimenol was formed via the stereoselective reduction of the prochiral carbonyl group of triadimefon. The relatively minor contribution of carbonyl reduction suggests that triadimefon may inhibit ecdysone 20-monooxygenase and disrupt insect molting hormone biosynthesis. 48-h LC50 tests for triadimefon and triadimenol with black fly larvae yielded median values (with 95% confidence intervals) of 6.1 (5.8-6.4) and 22.3 (20.3-24.1) mg/L respectively. The exposure of black fly larvae to sublethal concentrations of triadimefon resulted in increased microsomal P450 activity and affected the microsomal rates of both triadimefon depletion and triadimenol formation. In contrast to trout, black fly larvae produced a higher fraction of the more toxic triadimenol stereoisomers, which may explain in part why triadimefon exhibited a significantly greater toxicity with black fly larvae than trout. These results illustrate that while LC50 tests conducted with commercial triadimenol would presumably expose each organism to the same relative abundance of the four triadimenol stereoisomers, LC50 tests with triadimefon ultimately expose each organism to a unique set of triadimenol stereoisomers depending upon the organism's stereoselective metabolism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call