Abstract

Micro- and nano-plastics are prevalent in diverse ecosystems, but their impacts on biotransformation of organohalide pollutants and underpinning microbial communities remain poorly understood. Here we investigated the influence of micro- and nano-plastics on microbial reductive dehalogenation at strain and community levels. Generally, microplastics including polyethylene (PE), polystyrene (PS), polylactic acid (PLA), and a weathered microplastic mixture increased dehalogenation rate by 10 − 217% in both the Dehalococcoides isolate and enrichment culture, whereas the effects of polyvinyl chloride (PVC) and a defined microplastic mixture depended on their concentrations and cultures. Contrarily, nano-PS (80 nm) consistently inhibited dehalogenation due to increased production of reactive oxygen species. Nevertheless, the enrichment culture showed higher tolerance to nano-PS inhibition, implying crucial roles of non-dehalogenating populations in ameliorating nanoplastic inhibition. The variation in dehalogenation activity was linked to altered organohalide-respiring bacteria (OHRB) growth and reductive dehalogenase (RDase) gene transcription. Moreover, microplastics changed the community structure and benefited the enrichment of OHRB, favoring the proliferation of Dehalogenimonas. More broadly, the assembly of microbial communities on plastic biofilms was more deterministic than that in the planktonic cells, with more complex co-occurrence networks in the former. Collectively, these findings contribute to better understanding the fate of organohalides in changing environments with increasing plastic pollution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.