Abstract

Organohalide compounds are widespread in the environment as a result of both anthropogenic activities and natural production. The marine environment, in particular, is a major reservoir of organohalides, and reductive dehalogenation is thought to be an important process in the overall cycling of these compounds. Deltaproteobacteria are important members of the marine microbiota with diverse metabolic capacities, and reductive dehalogenation has been observed in some Deltaproteobacteria In this study, a comprehensive survey of Deltaproteobacteria genomes revealed that approximately 10% contain reductive dehalogenase (RDase) genes, which are found within a common gene neighborhood. The dehalogenating potential of select RDase A-containing Deltaproteobacteria and their gene expression were experimentally verified. Three Deltaproteobacteria strains isolated from marine environments representing diverse species, Halodesulfovibrio marinisediminis, Desulfuromusa kysingii, and Desulfovibrio bizertensis, were shown to reductively dehalogenate bromophenols and utilize them as terminal electron acceptors in organohalide respiration. Their debrominating activity was not inhibited by sulfate or elemental sulfur, and these species are either sulfate- or sulfur-reducing bacteria. The analysis of RDase A gene transcripts indicated significant upregulation induced by 2,6-dibromophenol. This study extends our knowledge of the phylogenetic diversity of organohalide-respiring bacteria and their functional RDase A gene diversity. The identification of reductive dehalogenase genes in diverse Deltaproteobacteria and confirmation of their organohalide-respiring capability suggest that Deltaproteobacteria play an important role in natural organohalide cycling.IMPORTANCE The marine environment is a major reservoir for both anthropogenic and natural organohalides, and reductive dehalogenation is thought to be an important process in the overall cycling of these compounds. Here we demonstrate that the capacity of organohalide respiration appears to be widely distributed in members of marine Deltaproteobacteria The identification of reductive dehalogenase genes in diverse Deltaproteobacteria and the confirmation of their dehalogenating activity through functional assays and transcript analysis in select isolates extend our knowledge of organohalide-respiring Deltaproteobacteria diversity. The presence of functional reductive dehalogenase genes in diverse Deltaproteobacteria implies that they may play an important role in organohalide respiration in the environment.

Highlights

  • Organohalide compounds are widespread in the environment as a result of both anthropogenic activities and natural production

  • In order to distinguish potential organohalide-respiring bacteria among characterized Deltaproteobacteria, 35 reductive dehalogenase (RDase) from 19 pure culture isolates were chosen for comparison with functionally characterized RDases from nonDeltaproteobacteria

  • Of the Deltaproteobacteria isolates with genomes in JGI, approximately 20% were from geographically diverse marine environments (50 of 255), and one-fourth of these marine Deltaproteobacteria contain one or more RDase A gene encoding the catalytic unit (RDase A) genes in their genomes (12 of 50), indicating that these are prevalent in marine Deltaproteobacteria

Read more

Summary

Introduction

Organohalide compounds are widespread in the environment as a result of both anthropogenic activities and natural production. Three Deltaproteobacteria strains isolated from marine environments representing diverse species, Halodesulfovibrio marinisediminis, Desulfuromusa kysingii, and Desulfovibrio bizertensis, were shown to reductively dehalogenate bromophenols and utilize them as terminal electron acceptors in organohalide respiration. Their debrominating activity was not inhibited by sulfate or elemental sulfur, and these species are either sulfate- or sulfur-reducing bacteria. The identification of reductive dehalogenase genes in diverse Deltaproteobacteria and confirmation of their organohalide-respiring capability suggest that Deltaproteobacteria play an important role in natural organohalide cycling. The identification of reductive dehalogenase genes in diverse Deltaproteobacteria and the confirmation of their dehalogenating activity through functional assays and transcript analysis in select isolates extend our knowledge of organohalide-respiring Deltaproteobacteria diversity. The crystal structures of both kinds of reductive dehalogenases indicated the presence of a corrinoid cofactor in the active center [15, 16]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call