Abstract

The direct conversion of cheap and widely available C1‐C3 alkanes in natural gas/shale gas into building blocks for the chemical industry is highly attractive from an environmental perspective as a replacement for current oil‐based processes. Due to the high chemical inertness of these alkanes, but the high reactivity of the desired reaction products, which are easily involved in non‐selective sequential reactions, ongoing research activities are focused on controlling product selectivity through catalyst design and/or reactor operation. In this context, we have critically analyzed research studies dealing with the effect of steam or liquid water on catalyst activity and, in particular, on selectivity in the conversion of CH4, C2H6 and C3H8 to C2+‐hydrocarbons, formaldehyde, methanol, ethylene, acetic acid, and propene. In addition, our personal views on possible future developments are also given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.