Abstract

In plants, epigenetic regulation mediates both the proper development of the plant and responses to environmental cues. Changes in epigenetic states employ DNA methylation, histone modification, and regulatory RNAs. In Arabidopsis thaliana, DNA methylation as a repressive mark is often associated with constitutively silenced loci, such as repetitive sequences, transposons, and heterochromatin. These sequences regularly give rise to small interfering RNAs, which direct DNA methylation through the RNA-directed DNA methylation (RdDM) pathway. For example, FWA locus is silenced in sporophytes and enriched with DNA methylation. Its methylated state is stable and passes to the next generation. This is an example of meiotically inherited epigenetic states. There are also epigenetic changes that can be inherited mitotically and are subsequently erased in the next generation. In this review, we use the vernalization-mediated epigenetic silencing of FLOWERING LOCUS C (FLC) as an example for this type of mitotically stable epigenetic state. Here, we discuss mechanisms of epigenetic changes that can result in meiotically or mitotically stable states with an emphasis on FWA and FLC as two examples.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.