Abstract

Candida albicans (C. albicans) are the most common cause of urinary fungal infections. C. albicans biofilms are of increasing clinical importance due to their resistance to antifungal therapy. Since the use of medical devices causes most hospital infections, polymeric coatings that reduce microorganisms adhesion and biofilm formation are considered an attractive strategy. In this work, the ability and possible mechanisms of poly(methylmethacrylate-co-dimethylacrylamide) (PMMDMA) to inhibit C. albicans biofilms on medical devices have been studied. Scanning electron microscopy was used to evaluate fungal adhesion at various pH conditions, while the surface roughness of the coated and uncoated catheters was analyzed by atomic force microscopy. The surface charge was assessed, and the contact angle was determined to evaluate the surface hydrophobicity. PMMDMA coated catheters showed reduced binding of C. albicans at all pH values studied and presented a hydrophilic contact angle of ϴ = 71°. Negative zeta potential values of PMMDMA enhanced the reduction in C. albicans binding. AFM images demonstrated a smoother and homogeneous surface of PMMDMA-coated catheters. Coating with PMMDMA provided a smoother, more hydrophilic, and negative-charged surface, contributing to a substantial reduction of C. albicans binding.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call