Abstract
The Tibetan Plateau (TP), as a whole, has undergone a moistening process since the late 1990s. However, the southern Tibetan Plateau (STP) is an exception, where summer monsoon precipitation amount has decreased, and lakes have shrunk. The cause for the precipitation decrease is not clear yet. Here we show that the monsoon (June to September) mean precipitation changes in the STP from 1979 to 2018 features a decadal variation component with a peak of around 10 years that is superposed on an upward ‘trend’ from 1979 to 1998 and a downward ‘trend’ afterward. We find that the decadal variation of the STP precipitation is associated with a large-scale dipolar sea surface temperature (SST) pattern between the equatorial central Pacific and the Indo-Pacific warm pool. A wet STP corresponds to negative SST anomaly in the equatorial central Pacific and positive SST anomaly in the Indo-Pacific warm pool. This equatorial SST gradient in the western Pacific generates pronounced easterly anomalies and a dipolar rainfall anomaly (i.e. a positive rainfall anomaly over the Maritime Continent and a negative anomaly in the equatorial western and central Pacific). Due to less precipitation over the equatorial western Pacific, the suppressed heat source appears to excite an anomalous anticyclonic band along 15–20° N extending from the Philippine Sea to the Bay of Bengal by emanating westward propagating descending transient Rossby waves. The low-level anticyclonic circulation over the Bay of Bengal further enhances northward moisture transport toward the STP and promote upward motion in the STP through changing local meridional circulation. Besides, the linearized atmospheric general circulation model experiments demonstrate that the dipole heating source can generate a high-pressure zone under the control of anticyclone over the western Pacific, which can extend westward to the Indian monsoon region.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.