Abstract

The water masses of the central and western equatorial Pacific can be divided into two parts: the Western Pacific Warm Pool (WPWP) and the Equatorial Upwelling Region (EUR). The behavior of the WPWP plays a significant role in global climate changes such as the El Niño-Southern Oscillation (ENSO), and it drastically modifies the oceanographic conditions in the area every few years. It is important to evaluate changes in time-series diatom fluxes during both the El Niño and the La Niña events. As a part of the Global Carbon Cycle and Related Mapping based on Satellite Imagery (GCMAPS) Program, time-series sediment trap moorings were deployed and recovered along the Equator at seven stations (Sites MT1–MT7) during five R/V Mirai cruises in the central and western Pacific during January 1999–January 2003. The entire length of this study is divided into two phases depending on the oceanographic conditions: the La Niña event (1999 and 2000); and the El Niño event (2002). Site MT3 was located in the WPWP and Sites MT5–MT7 were in the EUR. Annual means of total diatom fluxes increased towards the east in each year. The fluxes observed at Sites MT4–MT6 decreased from the La Niña event to the El Niño event. However, the fluxes observed at Site MT3 in 2001 and 2002 were higher than those in 2000. Total diatom fluxes showed different seasonal patterns at all sites. The diatom assemblages in the WPWP differed from those of the EUR. Pennate diatoms (e.g., Nitzschia bicapitata, Thalassionema nitzschioides) dominated in the WPWP, while the relative abundances of centric diatoms (e.g., Rhizosolenia bergonii, Azpeitia spp., Thalassiosira spp.) were higher than those of pennate diatoms in the EUR. The diatom fluxes during the La Niña event reflected seasonal oscillation of the WPWP in spatial extent. At Site MT3 during El Niño, terrestrial materials appeared to have been transported by subsurface currents, which might be a secondary influence on total diatom fluxes. The spatial extent of the WPWP reached Site MT7 in 2002, when total diatom fluxes decreased in the sediment traps located in the eastern region including Site MT7. Therefore, we conclude that the relationships between the ENSO and diatoms fluxes in the western and central equatorial Pacific can be explained by the geographic (west–east) expansion or contraction of the WPWP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call