Abstract

Mechanisms behind the pressure distribution and skin friction within a laminar separation bubble (LSB) are investigated by large-eddy simulations around a 5% thickness blunt flat plate at the chord length based Reynolds number 5.0 × 103, 6.1 × 103, 1.1 × 104, and 2.0 × 104. The characteristics inside the LSB change with the Reynolds number; a steady laminar separation bubble (LSB_S) at the Reynolds number 5.0 × 103 and 6.1 × 103, and a steady-fluctuating laminar separation bubble (LSB_SF) at the Reynolds number 1.1 × 104, and 2.0 × 104. Different characteristics of pressure and skin friction distributions are observed by increasing the Reynolds number, such that a gradual monotonous pressure recovery in the LSB_S and a plateau pressure distribution followed by a rapid pressure recovery region in the LSB_SF. The reasons behind the different characteristics of pressure distributions at different Reynolds numbers are discussed by deriving the Reynolds averaged pressure gradient equation. It is confirmed that the viscous stress distributions near the surface play an important role in determining the formation of different pressure distributions. Depending on the Reynolds numbers, the viscous stress distributions near the surface are affected by the development of a separated laminar shear layer or the Reynolds shear stress. In addition, we show that the same analyses can be applied to the flows around a NACA0012 airfoil.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.