Abstract

The presence of a reasonable flowback system after fracturing is a necessary condition for the high production of shale gas wells. At present, the optimization of the flowback system lacks a relevant theoretical basis. Due to this lack, this study established a new method for evaluating the conductivity of artificial fractures in shale, which can quantitatively characterize the backflow, embedment, and fragmentation of proppant during the flowback process. Then, the mechanism of the stress sensitivity of artificial fractures on fracture conductivity during the flowback stage of the shale gas well was revealed by performing the artificial fracture conductivity evaluation experiment. The results show that a large amount of proppant migrates, and the fracture conductivity decreases rapidly in the early stage of flowback, and then the decline gradually slows down. When the effective stress is low, the proppant is mainly plastically deformed, and the degree of fragmentation and embedment is low. When the effective stress exceeds 15.0 MPa, the fragmentation and embedment of the proppant will increase, and the fracture conductivity will be greatly reduced. The broken proppant ratio and embedded proppant ratio are the same under the two choke-management strategies. In the mode of increasing choke size step by step, the backflow proppant ratio is lower, and the broken proppant is mainly retained in fractures, so the damage ratio of fracture conductivity is lower. In the mode of decreasing choke size step by step, most of the proppant flows back from fractures, so the damage to fracture conductivity is greater. The research results have important theoretical guiding significance for optimizing the flowback system of shale gas wells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call