Abstract

1. The present study was designed to investigate the effects and mechanisms of relaxation induced by the nitric oxide (NO) donor, GEA 3175 (a 3-aryl-substituted oxatriazole derivative) on bovine bronchioles (effective lumen diameter 200-800 microm) suspended in microvascular myographs for isometric tension recording. 2. In segments of bovine bronchioles contracted to 5-hydroxytryptamine, GEA 3175 (10(-8)-10(-4) M) induced concentration-dependent reproducible relaxations. These relaxations were slow in onset compared to other NO-donors such as 3-morpholinosydonimine-hydrochloride (SIN-1) and S-nitroso-N-acetylpenicillamine (SNAP). 3. In 5-hydroxytryptamine-contracted preparations the order of relaxant potency (pD2) was: salbutamol (7.80) > GEA 3175 (6.18) > SIN-1 (4.90) > SNAP (3.55). In segments contracted to acetylcholine, the relaxant responses were reduced and GEA 3175 relaxed the bronchioles with pD2 = 4.41 +/- 0.12 and relaxations of 66 +/- 10% (n = 4), while SNAP and salbutamol caused relaxations of 19 +/- 6% (n = 4) and 27 +/- 6% (n = 8) at the highest concentration used, respectively. 4. Oxyhaemoglobin (10(-5) M), the scavenger of nitric oxide, caused rightward shifts of the concentration-relaxation curves to GEA 3175 and NO. 1H-[1,2,4]oxadiazolo[4,3,-a]quinoxalin-1-one (ODQ, 3 x 10(-6) M) and LY 83583 (10(-6) M), the inhibitors of soluble guanylate cyclase, also reduced the relaxations induced by GEA 3175 and nitric oxide. However, ODQ did not affect salbutamol-evoked relaxation in the bovine small bronchioles. 5. GEA 3175-induced relaxations were reduced in potassium-rich (60 mmol l(-1) K+) solution. Glibenclamide (10(-6) M) markedly inhibited the relaxations induced by the opener of ATP-sensitive K+ channels, levcromakalim (3 x 10(-8)-10(-5) M), but it did not modify the relaxations induced by GEA 3175 or salbutamol. Apamin (5 x 10(-7) M), a blocker of the small Ca2+-activated K+-channels did not affect the relaxations to GEA 3175. In contrast, blockers of large Ca2+-activated K+-channels, charybdotoxin (3 x 10(-8)-10(-7) M) and iberiotoxin (10(-8) M), did inhibit the relaxations to GEA 3175. The combination of apamin and charybdotoxin did not induce an additional inhibitory effect on the relaxations to GEA 3175 compared to charybdotoxin alone. 6. In preparations where a concentration-response curve to GEA 3175 or NO was first obtained in the presence of LY 83583, incubation with charybdotoxin (10(-7) M) did produce an additional inhibitory effect of the relaxations. However. in the presence of ODQ (3 x 10(-6) M), iberiotoxin (10(-8) M) did not produce additional reduction of the NO- or GEA 3175-induced relaxations. 7. The present results suggest that the slow-releasing NO-donor GEA 3175 is more potent than the traditional NO donors in inducing relaxations of bovine bronchioles. GEA 3175, as for exogenously added NO, elicits relaxations through a cyclic GMP-dependent mechanism followed by opening of large conductance Ca2+-activated K+-channels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.