Abstract

Free chlorine (HOCl) and monochloramine (NH2Cl) are two of the most commonly used water disinfectants in water treatment; however, the capability of rapid mixing of HOCl into NH2Cl to induce oxidative reactions for efficient removal of contaminants remains largely unknown. In this study, 1,4-dioxane (1,4-D) removal was quantified during the rapid mixing of HOCl into NH2Cl, to evaluate the effects of solution pH and HOCl-to-NH2Cl ratio, and to identify mechanisms by which reactive species are generated in the system. Results showed that the highest 1,4-D removal was observed at the near-neutral pH of 6 with the HOCl-to-NH2Cl molar ratio of 1. Hydroxyl radical (HO•) contributed to 60–70 % of 1,4-D degradation and its generation was initiated by the hydrolytic decay of NH2Cl and NHCl2 upon HOCl addition to NH2Cl with rapid mixing, and subsequent transformation of peroxynitrite (ONOO-) and peroxynitrous acid (ONOOH). The results also confirmed that the presence of dissolved oxygen was required to form ONOO-/ONOOH, and ONOO- was a crucial precursor for reactive radical generation. These findings provide insight into the reaction mechanism associated with the system of rapidly mixed HOCl into NH2Cl with the potential optimization and application for efficient trace organics removal in water treatment and reuse.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call