Abstract

Oriented attachment (OA) of nanocrystals is now widely recognized as a key process in the solution-phase growth of hierarchical nanostructures. However, the microscopic origins of OA remain unclear. We perform molecular dynamics simulations using a recently developed ReaxFF reactive force field to study the aggregation of various titanium dioxide (anatase) nanocrystals in vacuum and humid environments. In vacuum, the nanocrystals merge along their direction of approach, resulting in a polycrystalline material. By contrast, in the presence of water vapor the nanocrystals reorient themselves and aggregate via the OA mechanism to form a single or twinned crystal. They accomplish this by creating a dynamic network of hydrogen bonds between surface hydroxyls and surface oxygens of aggregating nanocrystals. We determine that OA is dominant on surfaces that have the greatest propensity to dissociate water. Our results are consistent with experiment, are likely to be general for aqueous oxide systems, and demonstrate the critical role of solvent in nanocrystal aggregation. This work opens up new possibilities for directing nanocrystal growth to fabricate nanomaterials with desired shapes and sizes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.