Abstract
The oriented attachment (OA) mechanism has been investigated as an important process in the formation of anisotropic nanostructures such as depicted. The results showed that the control of a desired phase in this system may be attained by the control of OA mechanism through pH value, obtaining several morphologies.A new synthetic method for TiO(2) nanocrystals starting from metallic Ti and hydrogen peroxide was developed, in order to obtain minimal interferences to evaluate phase transformation in the system. The results revealed that the crystal morphology appeared to be dictated by the pH value, which shows a strong dependence on the surface energy. The involvement of the oriented attachment (OA) mechanism is important to modify the morphology and, hence, the distribution of the surface energy and confirmed that the mechanism can accelerate certain phase transitions, albeit pH dependence in terms of how the mechanism affects the final particle morphology and direction of crystalline growth. The importance of the mechanism was also apparent in extremely basic conditions, which indicates a possible correlation with the formation of hydrogen titanate nanostructures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.