Abstract
Mechanisms of interaction of ionizing radiation with biological objects are a chain of successive physical and physico-chemical changes, which manifest themselves in the form of excitation, primary and secondary ionization of molecules. Biosynthesis of ATP, which is carried out by a system of oxidation-reduction enzymes localized in the inner membrane of mitochondria - the respiratory chain, belongs to the vital processes that are directly disturbed under the action of ionizing radiation. The high degree of damage to this system is due to the significant radiosensitivity of metal-containing enzymes. The purpose of the work is to study the formation of the adaptive response of muscle tissue of sexually mature rats to the influence of ionizing radiation at a dose of 0.5 Gy. It was concluded that a day after irradiation with the dose of 0.5 Gy, the content of contractile proteins in skeletal muscle decreases slightly. On the 15th day, the content of contractile proteins began to decrease. By the 30th day, the content of contractile proteins decreased by 22.9% for myosin, by more than 11% for actin, and by 7 and 8% for troponin and tropomyosin, respectively, compared to the values of the intact group. A similar picture is observed in the cardiac muscle. Mg2+,Ca2+-ATP-ase activity of actomyosin, starting from the 1st day was shown to be increased in both the skeletal and cardiac muscles, reaching its peak in the cardiac muscle on the 15th day, in contrast to the skeletal muscle, where this indicator reached its peak on the 7th day. The authors conclude that irradiation of sexually mature animals with the dose of 0.5 Gy forms an adaptive response that is accompanied by an increase in Mg2+,Ca2+-ATP-ase activity due to the formation of a strong form of binding between F-actin and myosin, actin monomers go into the typical for actomyosin “turned on stage”, and the myosin heads acquire an ordered orientation in the muscle fiber. According to author’s idea, the data obtained indicated the benefit and reasonability of using in post-radiation dysfunctions complex pharmacological treatment drugs that are able to normalize intracellular homeostasis, eliminate probable acidic changes initiated by radiation exposure, activate the processes of intramuscle energy generation and which have protective properties in relation to the muscular system.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.