Abstract
Schroeder-phase harmonic tone complexes can have a flat temporal envelope and rising or falling instantaneous-frequency sweeps within F0 periods, depending on the phase-scaling parameter C. Human tone-detection thresholds in a concurrent Schroeder masker are 10-15 dB lower for positive C values (rising frequency sweeps) compared to negative (falling sweeps), potentially due to cochlear mechanics, though this hypothesis remains controversial. Birds provide an interesting model for studies of Schroeder masking because many species produce vocalizations containing frequency sweeps. Prior behavioral studies in birds suggest less behavioral threshold difference between maskers with opposite C values than in humans, but focused on low masker F0s and did not explore neural mechanisms. We performed behavioral Schroeder-masking experiments in budgerigars (Melopsittacus undulatus) using a wide range of masker F0 and C values. Signal frequency was 2800 Hz. Neural recordings from the midbrain characterized encoding of behavioral stimuli in awake animals. Behavioral thresholds increased with increasing masker F0 and showed minimal difference between opposite C values, consistent with prior budgerigar studies. Midbrain recordings showed prominent temporal and rate-based encoding of Schroeder F0, and in many cases, marked asymmetry in Schroeder responses between C polarities. Neural thresholds for Schroeder-masked tone detection were often based on a response decrement compared to the masker alone, consistent with prominent modulation tuning in midbrain neurons, and were generally similar between opposite C values. The results highlight the likely importance of envelope cues in Schroeder masking and show that differences in supra-threshold Schroeder responses do not necessarily result in neural threshold differences.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have