Abstract

The mechanisms of corrosion and wear improvements by low energy high current pulsed electron beam (LEHCPEB) have been investigated for an AISI 316 L steel. Selective purification followed by epitaxial growth occurred in the top surface melted layer (2–3 μm thick) that was softened by tensile stresses and, to a much lower extent, by lower efficiency of MnS precipitation hardening. Electrochemical impedance spectroscopy and potentiodynamic polarization analyses used to model the corrosion behavior revealed that, while craters initiated at MnS inclusions initially served as pitting sites, the resistance was increased by 3 orders of magnitude after sufficient number of pulses by the formation of a homogeneous covering layer. The wear resistance was effectively improved by sub-surface (over 100 μm) work hardening associated with the combine effect of the quasi-static thermal stress and the thermal stress waves. The overall results demonstrate the potential of the LEHCPEB technique for improving concomitantly the corrosion and wear performances of metallic materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.