Abstract

Microbial passivation remediation of heavy metal-contaminated farmland has attracted increasing attention. However, the molecular mechanism by which heavy metal-immobilizing bacteria inhibit the uptake of Cd and Pb by wheat is not clear. Herein, a heavy metal-immobilizing bacterium, Enterobacter bugandensis TJ6, was used to reveal its immobilization mechanisms of Cd and Pb and inhibition of Cd and Pb uptake by wheat using metabolomics and proteomics. Compared with the control, strain TJ6 significantly reduced (44.7%–56.6%) the Cd and Pb contents of wheat roots and leaves. Strain TJ6 reduced the Cd and Pb concentrations by adsorption, intracellular accumulation, and bioprecipitation in solution. Untargeted metabolomics showed that strain TJ6 produced indole-3-acetic acid (IAA), betaine, and arginine under Cd and Pb stress, significantly improving the resistance of strain TJ6 and wheat to Cd and Pb. Label-free proteomics showed that 143 proteins were upregulated and 61 proteins were downregulated in wheat roots in the presence of strain TJ6. The GO items of the differentially expressed proteins (DEPs) involved in protein-DNA complexes, DNA packaging complexes, and peroxidase activity were enriched. In addition, the ability of wheat roots to synthesize abscisic acid and jasmonic acid was improved. In conclusion, strain TJ6 reduced Cd and Pb uptake in wheat through its own adsorption of Cd and Pb and regulation of wheat root DNA repair ability, plant hormone levels, and antioxidant activities. These results provide new insights and a theoretical basis for the application of heavy metal-immobilizing bacteria in safe wheat production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call