Abstract
Electromechanical coupling is ubiquitous in nature and underpins the functionality of materials and systems as diverse as ferroelectric and multiferroic materials, electrochemical devices, and biological systems, and strain-based scanning probe microscopy (s-SPM) techniques have emerged as a powerful tool in characterizing and manipulating electromechanical coupling at the nanoscale. Uncovering underlying mechanisms of electromechanical coupling in these diverse materials and systems, however, is a difficult outstanding problem, and questions and confusions arise from recent experiment observations of electromechanical coupling and its apparent polarity switching in some unexpected materials. We propose a series of s-SPM experiments to identify different microscopic mechanisms underpinning electromechanical coupling and demonstrate their feasibility using three representative materials. By employing a combination of spectroscopic studies and different modes of s-SPM, we show that it is possible to distinguish electromechanical coupling arising from spontaneous polarization, induced dipole moment, and ionic Vegard strain, and this offers a clear guidance on using s-SPM to study a wide variety of functional materials and systems.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have