Abstract

Efflorescence presents not only as a cosmetic concern but also as a structural issue, which impacts the performance of alkali-activated materials (AAMs). In this study, the mechanisms of efflorescence of alkali-activated slag (AAS) pastes are investigated. First, the efflorescence of AAS pastes with different alkali dosages (3 %, 5 % and 7 %), activator types (sodium hydroxide (NH) and sodium silicate (NS)), exposure atmospheres (ambient, N2 and 0.2 vol% CO2), and relative humidities (40 %, 60 % and 80 %) was observed. Subsequently, leaching tests were performed and the impacts of efflorescence on AAS pastes at different heights were studied. It was found that a lower relative humidity facilitated more rapid and severe efflorescence. The positioning of efflorescence products was dependent on the porosity of the matrix. Compared to NH pastes, NS pastes subjected to semi-contact water conditions were more vulnerable to cracking problems, which turned out to be exacerbated by the formation of efflorescence products. A new method to quantify efflorescence was developed and it corresponded well with both efflorescence observations and leaching experiments. Furthermore, a competitive reaction between Ca and Na in the presence of carbonate ions was identified. CaCO3, a representative product of natural carbonation, was rarely found in the regions where efflorescence products (sodium carbonate) formed. Regarding compressive strength, NS pastes were more adversely affected by efflorescence than NH pastes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.