Abstract

The acute adaptive immune response is complex, proceeding through phases of activation of quiescent lymphocytes, rapid expansion by cell division and cell differentiation, cessation of division and eventual death of greater than 95% of the newly generated population. Control of the response is not central but appears to operate as a distributed process where global patterns reliably emerge as a result of collective behaviour of a large number of autonomous cells. In this review, we highlight evidence that competing intracellular timed processes underlie the distribution of individual fates and control cell proliferation, cessation and loss. These principles can be captured in a mathematical model to illustrate consistency with previously published experimentally observed data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.