Abstract

Barium titanate (BTO) and strontium titanate (STO) are often treated as close analogues, and models of defect behavior are freely transferred from one material to the other with only minor modifications. On the other hand, it is often reported that B-site vacancies (vB) are the dominant metal vacancy in BTO, while A-site vacancies (vA) dominate in STO. This difference precludes the use of analogous defect models for BTO and STO, begging the question: how similar are the defect chemistries of the two materials? Here, we address this question with density functional theory calculations using a state-of-the-art hybrid exchange correlation functional, which more accurately describes the electronic structure and charge localization than traditional functionals. We find that vA is the dominant metal vacancy in STO but that different combinations of vA, vB, and vB-vO complexes are present in BTO depending on processing and doping. Mechanistically, this occurs for two reasons: thermodynamic differences in the accessible processing conditions of the two materials and energy differences in the bonds broken when forming the vacancies. These differences can also lead to widely differing responses when impurity dopants are intentionally added. Therefore, the response of metal vacancy behavior in BTO and STO to the inclusion of niobium and iron, two typical dopants in these systems, is examined and compared.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.