Abstract
An essential step of the life cycle of retroviruses is the stable insertion of a copy of their DNA genome into the host cell genome, and lentiviruses are no exception. This integration step, catalyzed by the viral-encoded integrase, ensures long-term expression of the viral genes, thus allowing a productive viral replication and rendering retroviral vectors also attractive for the field of gene therapy. At the same time, this ability to integrate into the host genome raises safety concerns regarding the use of retroviral-based gene therapy vectors, due to the genomic locations of integration sites. The availability of the human genome sequence made possible the analysis of the integration site preferences, which revealed to be nonrandom and retrovirus-specific, i.e. all lentiviruses studied so far favor integration in active transcription units, while other retroviruses have a different integration site distribution. Several mechanisms have been proposed that may influence integration targeting, which include (i) chromatin accessibility, (ii) cell cycle effects, and (iii) tethering proteins. Recent data provide evidence that integration site selection can occur via a tethering mechanism, through the recruitment of the lentiviral integrase by the cellular LEDGF/p75 protein, both proteins being the two major players in lentiviral integration targeting.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.