Abstract

The oxidation kinetics of ZrB2‐30 vol% SiC were analyzed statistically with the goal of understanding the underlying mechanisms for observed variability. A box furnace was used to oxidize specimens for times between 30 s and 100 h at temperatures of 1300°C–1550°C in air. The specimens were characterized to determine weight change, scale thickness, and scale composition to quantify the oxidation behavior. Weight gain measurements of different specimens after 100 min of exposure showed differences of up to 2 mg/cm2 for the same testing conditions where the average weight gain was 2.54 mg/cm2. Variation of 30%–80% was observed in the average thickness of each layer of the oxide within a single specimen. Viscous glass flow was ruled out as a potential mechanism. Glass bubble formation was proposed as the main cause for oxidation kinetics variability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.