Abstract
Possible mechanisms for homologous recombination in CHO cells have been investigated using a stably integrated vector, pIII-14gpt. The vector contains 2 inactive neo gene fragments in tandem arrangement. Functional neo gene activity can be restored by recombination between homologous regions in the 2 fragments. Cells in which this event has taken place become resistant to the antibiotic G418. Possible mechanisms for neo gene reactivation in this system are unequal exchange between chromatids, intra-chromatidal deletion and gene conversion. DNA from a total of 74 G418-resistant cell clones have been isolated, and analyzed on Southern blots using neo-specific probes. Rearrangements of neo-specific restriction fragments were found to have occurred in all cell clones. In 50% of the revertants, these rearrangements can be explained by a deletion which brings the complementary regions in the 2 neo gene gragments together. One single revertant (1.3%) shows a possible gene conversion event. The other isolated revertants (about 48%) contain more complex rearrangements. These results indicate that the predominating recombination mechanism for reactivation of the neo gene in this system is either a deletion within a chromatid or an unequal exchange between sister chromatids.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have