Abstract

We report the measurement of optical loss in submicron silicon-on-insulator waveguides at a wavelength of 2.02 μm for the fundamental TE mode. Devices were fabricated at IMEC and at A⋆STAR's Institute of Microelectronics (IME) and thus these measurements are applicable to studies which require fabrication using standard foundry technology. Propagation loss for strip and rib waveguides of 3.3 ± 0.5 and 1.9 ± 0.2 dB cm−1 were measured. Waveguide bending loss in strip and rib waveguides was measured to be 0.36 and 0.68 dB per 90° bend for a radius of 3 μm. Doped waveguide loss in rib waveguides was measured for both n-type and p-type species at two doping densities for each doping type. Measured results from propagation, bending, and free-carrier loss were found to be in good agreement with analytical or numerical models. Loss due to lattice defects introduced by ion-implantation is found to be underestimated by a previously proposed empirical model. The thermal annealing of the lattice defects is consistent with removal of the silicon divacancy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.