Abstract

Diesel engine exhaust has been identified to be highly carcinogenic. In order to improve the control of diesel engine exhaust emissions, the diesel engine oxidation catalyst (DOC) + catalytic diesel particulate filter (CDPF) + selective catalytic reduction catalyst (SCR) + NH3 oxidation catalyst (ASC) united technology has become the mainstream technology for catalytic aftertreatment. Perovskite oxides have emerged as a promising catalyst for NO oxidation and can be used as the DOC. Undoped La2MMnO6 (M = Co, Fe, Ni, Cu) double perovskites, A-site Ba-doping (La2-xBax)CoMnO6 (%Ba = 0, 25%, 50%, 75%, 100%) perovskites and B-site Cu-doping La2Co1-yCuyMnO6 (y = 0, 0.25, 0.50, 0.75, 1) double perovskites were prepared by a facile molten-salt synthesis method and examined by XRD, SEM, BET, in situ DRIFTS, and XPS. In addition, we calculated the B-site ionic magnetic moments of the double perovskites μ which were contributed by the effective Bohr magneton number np of the B-site 3d transition metal ions, such as Mn3+, Mn4+, Co3+, Fe3+, Ni2+, and Cu2+. The correlations between the B-site ionic magnetic moments and the maximum NO conversion over all those double perovskites were also calculated. The B-site ionic magnetic moments has a strong positive correlation with the highest conversion rate of NO catalytic oxidation over all those double perovskites. That is, the higher the B-site ionic magnetic moments, the better the catalytic oxidation performance of NO over the double perovskites. So enhancing the B-site ionic magnetic moments by A-site doping is a method to improve the catalytic activity of NO oxidation over the perovskites. Increasing the B-site ionic magnetic moments is the key index to improve the catalytic activity of NO oxidation of the double perovskites by B-site doping.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.