Abstract
Limestone calcined clay cement (LC3) is a green binder with great practical importance for the cement industry. Growing application has increased the need to understand the mechanisms governing its thixotropy for better control of workability. While formation of C-S-H bridges is understood to dominate the thixotropy of ordinary Portland cement, LC3 paste displayed unique thixotropy properties. In this study, focused beam reflectance measurement, zeta potential, 1H nuclear magnetic resonance relaxometry and micro X-ray computed tomography were used to track the colloidal interaction and hydration extent within LC3 paste. Results showed that flocculation due to the negative surface charge and water affinity of calcined clay appears to be the dominating factor. This leads to a reduction of water available to contribute to fluidity of the paste and, in turn, governing the development of thixotropy over time. In addition, the dilution effect due to high clinker substitution diminishes thixotropy growth with time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.