Abstract

Liver-specific PEPCK knockout mice, which are viable despite markedly abnormal lipid metabolism, exhibit mild hyperglycemia in response to fasting. We used isotopic tracer methods, biochemical measurements, and nuclear magnetic resonance spectroscopy to show that in mice lacking hepatic PEPCK, 1) whole-body glucose turnover is only slightly decreased; 2) whole-body gluconeogenesis from phosphoenolpyruvate, but not from glycerol, is moderately decreased; 3) tricarboxylic acid cycle activity is globally increased, even though pyruvate cycling and anaplerosis are decreased; 4) the liver is unable to synthesize glucose from lactate/pyruvate and produces only a minimal amount of glucose; and 5) glycogen synthesis in both the liver and muscle is impaired. Thus, although mice without hepatic PEPCK have markedly impaired hepatic gluconeogenesis, they are able to maintain a near-normal blood glucose concentration while fasting by increasing extrahepatic gluconeogenesis coupled with diminishing whole-body glucose utilization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.