Abstract

The high β-glucan content in barley disrupts the gluten network in dough. Scanning electron microscopy (SEM), differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FTIR), and solid-state nuclear magnetic resonance (NMR) techniques were used to clarify how β-glucan affected the quality of the gluten network structure with β-glucan contents of 0–2%. The results suggest that the physical hindrance of the β-glucan gel destroyed the formation of the gluten network structure. When 1.0–2.0% β-glucan was added, the percentage of α-helical structures increased significantly. When the added amount of β-glucan reached 2.0%, the sulfhydryl group (SH) content increased from 8.06 to 10.27 µmol/g, and the disulfide bond (SS) content decreased from 240.09 to 217.38 µmol/g. The interaction between β-glucan and gluten mainly resulted from the interaction of electron-withdrawing groups, such as carbonyl groups (CO) and double bond carbons (CC), and carbon atoms on the side chains of β-glucan, which play an important role in the central structure of glutenin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.