Abstract
This study introduces a new insight on the mechanism of selective electrooxidation of hydrazine in alkaline media. The catalytic process takes place on nickel oxide surface of a Ni oxide nano-particle decorated carbon support (NiO/C). The catalyst was synthesized by wet impregnation and a liquid reduction procedure followed by thermal annealing. In-situ X-ray absorption fine structure (XAFS) spectroscopy was used to investigate the reaction mechanism for hydrazine electrooxidation on NiO surface. The spectra of X-ray absorption near-edge structure (XANES) of Ni K-edge indicated that adsorption of OH− on Ni site during the hydrazine electrooxidation reaction. Density functional theory (DFT) calculations were used to elucidate and suggest the mechanism of the electrooxidation and specifically propose the localization of electron density from OH− to 3d orbital of Ni in NiO. It is found that the accessibility of Ni atomic sites in NiO structure is critical for hydrazine electrooxidation. Based on this study, we propose a possible reaction mechanism for selective hydrazine electrooxidation to water and nitrogen taking place on NiO surface as it is applicable to direct hydrazine alkaline membrane fuel cells.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.