Abstract

Chemical bonds determine electron and phonon transport in solids. Tailoring chemical bonding in thermoelectric materials causes desirable or compromise thermoelectric transport properties. In this work, taking an example of CaMg2 Bi2 with covalent and ionic bonds, density functional theory calculations uncover that element Zn, respectively, replacing Ca and Mg sites cause the weakness of ionic and covalent bonding. Electrically, Zn doping at both Ca and Mg sites increases carrier concentration, while the former leads to higher carrier concentration than that of the latter because of its lower vacancy formation energy. Both doping types increase density-of-state effective mass but their mechanisms are different. The Zn doping Ca site induces resonance level in valence band and Zn doping Mg site promotes orbital alignment. Thermally, point defect and the change of phonon dispersion introduced by doping result in pronounced reduction of lattice thermal conductivity. Finally, combining with the further increase of carrier concentration caused by Na doping and the modulation of band structure and the decrease of lattice thermal conductivity caused by Ba doping, a high figure-of-merit ZT of 1.1 at 823 K in Zn doping Ca sample is realized, which is competitive in 1-2-2 Zintl phase thermoelectric systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.