Abstract

AbstractElectron beam melting was utilized to investigate the behavior of carbon flow by melting 100 g of multi-crystalline silicon in an electron beam furnace for five minutes. Carbon and nitrogen are the constituent impurities in contaminated Si samples with an average weight of 13 % and 9, respectively. The electron beam melting experiment caused redistribution of the impurities along the periphery and bottom of the Si sample with a pie-shaped structure. Investigations through scanning electron microscopy and energy dispersive X-ray spectroscopy confirmed that the impurities were silicon nitride and silicon carbide. It was determined that Si3N4 has a rod-shaped microstructure, whereas SiC has a granular morphology. By segregating the impurities redistributed through this technique, pure Si was obtained in the remaining sample.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call