Abstract

ABSTRACT The metal ion selectivity series displayed by a reactive polymer, the phosphinic acid ion exchange/redox resin, was determined from equinormal solutions of 1 milliequivalent metal ion per milliequivalent of polymer ligand sites and compared to results from trace ion solutions. It was found that intervention by the recognition mechanism (i.e., reduction) with Hg(II) and Ag(I) ions from pH 2 aqueous solutions led to high resin loading capacities. Thus, the phosphinic resin/Hg(II) interaction displayed a log D of 3.88, compared to 3.80 from a 10-4 N solution, indicating that the recognition mechanism obviated any influence of a loading effect. The loading effect was apparent in Fe(III) complexatign wherein a log D of 4.94 was found from a 10-4 N solution and 0.40 from the equinormal solution. The solution acidity was also an important determinant of selectivity: the series was Fe > Hg > Mn > Ag from 4N HNO3 and Hg > Ag > Mn > Fe from 0.01N HN03. The performance of the phosphinic acid resin was contr...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call