Abstract

Microbial co-metabolism is crucial for the efficient biodegradation of polycyclic aromatic hydrocarbons (PAHs); however, their intrinsic mechanisms remain unclear. To explore the co-metabolic degradation of PAHs, root organic acids (ROAs) (phenolic ROAs: caffeic acid [CA] and ferulic acid [FA]; non-phenolic ROAs: oxalic acid [OA]) were exogenously added as co-metabolic substrates under high (HFe) and low (LFe) iron levels in this study. The results demonstrated that more than 90% of PAHs were eliminated from the rhizosphere of Phragmites australis. OA can promote the enrichment of unrelated degrading bacteria and non-specific dioxygenases. FA with a monohydroxy structure can activate hydroxylase; however, it relies on phytosiderophores released by plants (such as OA) to adapt to stress. Therefore, non-specific co-metabolism occurred in these units. The best performance for PAH removal was observed in the HFe–CA unit because: (a) HFe concentrations enriched the Fe-reducing and denitrifying bacteria and promoted the rate-limiting degradation for PAHs as the enzyme cofactor; (b) CA with a dihydroxyl structure enriched the related degrading bacteria, stimulated specific dioxygenase, and activated Fe to concentrate around the rhizosphere simultaneously to perform the specific co-metabolism. Understanding the co-metabolic degradation of PAHs will help improve the efficacy of rhizosphere-mediated remediation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call