Abstract

The mechanism of oxygen response in several newly synthesized oxygen-sensitive chars was studied with the use of EPR spectroscopy. The results suggest that the compounds contain two basic types of paramagnetic centers (PC). The change in oxygen concentration leads to a mutual and reversible transformation of PCs in chars, which is reflected in EPR parameters. The adsorbed molecular oxygen progressively disturbs the wave functions of the PCs and so breaks the Heisenberg exchange between them. At high oxygen concentration, the 2D dipole-dipole interaction between PCs at the surface comes into play and determines the EPR lineshape. A suggested model quantitatively describes the evolution of the basic EPR parameters of each PC as a function of oxygen concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.