Abstract
We have reported that the peroxyl radicals derived from methyl eicosapentaenoate (20:5n-3) are more polar than those from methyl linoleate (18:2n-6) since the former peroxyl radicals have at least two molecules of oxygen in a molecule while the latter peroxyl radical has one. This lowers the oxidizability for 20:5n-3 in aqueous Triton X-100 micelles by enhancing the termination reaction rate for peroxyl radicals and by reducing the rate of propagation since there may be more polar peroxyl radicals derived from 20:5n-3 at the surface than within the micelle core. In this study, we measured the effect of three antioxidants, di-tert-butyl-4-methylphenol (BHT), 2,2,5,7,8-pentamethyl-6-chromanol (PMC) and 2-carboxy-2,5,7,8-tetramethyl-6-chromanol (Trolox), on the oxidation of lipids in aqueous micelle. Antioxidants give a clear induction period during oxidation of 18:2n-6 initiated with a water-soluble radical initiator, and its induction length decreases in the order of BHT > PMC > Trolox. This is consistent with the proposed location of three antioxidants: being in the core of micelle, at the surface, or in aqueous phase, respectively. However, BHT does not inhibit the oxidation of 20:5n-3 efficiently, and its rate of oxidation is slower than that observed in the oxidation of 18:2n-6, supporting the idea that polar peroxyl radicals derived from 20:5n-3 are preferentially located at the surface of the micelle. Similar results were obtained when oxidation was initiated with a lipid-soluble radical initiator except antioxidants had lesser effect on the oxidation rate of 20:5n-3.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have