Abstract
ObjectiveThis study aimed to investigate the mechanism of long noncoding ribonucleic acid (lncRNA) SNHG16 on kidney clear cell carcinoma (KIRC) cells by targeting miR-506-3p/ETS proto-oncogene 1, transcription factor (ETS1)/RAS/Extracellular regulated protein kinases (ERK) molecular axis, thus to provide reference for clinical diagnosis and treatment of KIRC in the future. MethodsThirty-six patients with KIRC were enrolled in this study, and their carcinoma tissues and adjacent tissues were obtained for the detection of SNHG16/miR-506-3p/ETS1/RAS/ERK expression. Then, over-expressed SNHG16 plasmid and silenced plasmid were transfected into KIRC cells to observe the changes of their biological behavior. ResultsSNHG16 and ETS1 were highly expressed while miR-506- 3p was low expressed in KIRC tissues; the RAS/ERK signaling pathway was significantly activated in KIRC tissues (P < 0.05). After SNHG16 silence, KIRC cells showed decreased proliferation, invasion and migration capabilities and increased apoptosis rate; correspondingly, increase in SNHG16 expression achieved opposite results (P < 0.05). Finally, in the rescue experiment, the effects of elevated SNHG16 on KIRC cells were reversed by simultaneous increase in miR-506-3p, and the effects of miR-506-3p were reversed by ETS1. Activation of the RAS/ERK pathway had the same effect as increase in ETS1, which further worsened the malignancy of KIRC. After miR-506-3p increase and ETS1 silence, the RAS/ERK signaling pathway was inhibited (P < 0.05). At last, the rescue experiment (co-transfection) confirmed that the effect of SNHG16 on KIRC cells is achieved via the miR-506-3p/ETS1/RAS/ERK molecular axis. ConclusionSNHG16 regulates the biological behavior of KIRC cells by targeting the miR-506-3p/ETS1/RAS/ERK molecular axis.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have