Abstract

Materials for critical components in nuclear fuel reprocessing plants are required to have low corrosion rates and long designed life because access for repairs is not possible. Stainless steel type 304L, nitric acid grade (NAG), is the new material suitable for such applications. It has guaranteed low corrosion rates and is not susceptible to intergranular corrosion (IGC) in nitric acid environments. The corrosion behavior of type 304L stainless steel, NAG, and type 304L stainless steel, commercial purity (CP), in nitric acid environments is investigated in detail. Studied are: microstructural mapping in the three directions (longitudinal, long transverse, and short transverse), effect of sensitization heat treatment, resolution annealing and sensitization heat treatment for the as-received and cold-worked samples of the two varieties on the resultant microstructures. The anodic polarization characteristics along the three directions for both varieties in 1N HNO3 are compared. The susceptibility of both varieties to end grain corrosion in 9N HNO3 + 1 g Cr+6/liter boiling solution is assessed, and microstructural examination of the exposed sample is carried out to compare the degree of end grain corrosion. Their susceptibility to IGC due to segregation of impurity elements to grain boundaries is also compared. It is shown that controlled microstructure (fine grain size, retained cold work, and discrete precipitation at grain boundaries) along with controlled chemical composition is responsible for improved corrosion resistance of the NAG variety. The NAG variety has much less susceptibility to corrosion along the long- and short-transverse directions and, therefore, less susceptibility to end grain corrosion. The means and consequences of controlling chemical composition are also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.