Abstract

The expansion in the Cu-O hybridization energy, t, usually used for the simplification of the extended Hubbard Hamiltonian, is shown to meet with difficulties for the known parameters of ${\mathrm{CuO}}_{2}$ planes of cuprate perovskites. An expansion in a power series in \ensuremath{\lambda}t, \ensuremath{\lambda}\ensuremath{\approxeq}0.1, is suggested, which is applicable for these values of parameters and in which the Hubbard repulsion and the Cu-O hybridization are considered on an equal footing. A Hamiltonian obtained with the help of the expansion for the lower part of the energy spectrum, is equivalent to the t-J Hamiltonian and the corresponding states are some generalizations of the Zhang-Rice singlets. The Hamiltonian contains terms describing a static attraction between holes and for reasonable sets of parameters the attraction is approximately equal to a half of the superexchange constant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.