Abstract

A liquid-phase method for preparing uniform-sized silica nanospheres (SNSs) 12 nm in size and their three-dimensionally ordered arrangement upon solvent evaporation have recently been pioneered by us. The SNSs are formed in the emulsion system containing Si(OEt)4 (TEOS), water, and basic amino acids under weakly basic conditions (pH 9−10). Here, we report the formation mechanism of the SNSs; the reasons for the uniform size and the ordered arrangement are described in detail. The formation process is monitored by FE-SEM, SAXS, and liquid-state NMR. The FE-SEM observations reveal that silica nanoparticles ca. 4 nm in size are formed in the water phase at the early stage (∼0.5 h) of the reaction. The SAXS measurements suggest that the number density of the particles remains unchanged when they are gradually grown. Liquid-state 1H NMR analyses suggest that TEOS are slowly hydrolyzed at the oil−water interface to continuously supply silicate species into the water phase. The silicate species are immediately c...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call