Abstract
A significant progress has recently been made in the synthesis of monodisperse silica nanoparticles less than 30 nm in diameter by using basic amino acids (e.g., lysine) as a base catalyst for hydrolysis of silicon alkoxide. Alternatively, a more versatile and economical amino acid-free method has been developed to synthesize uniform silica nanospheres (SNSs) with low polydispersity (<12%) in liquid-liquid biphasic systems containing tetraethoxysilane (TEOS), water, and primary amine (or ammonia) under precisely controlled pH conditions (pH 10.8-11.4). The diameter of the SNSs determined from scanning electron microscopy (SEM) can be tuned from ∼12 to ∼36 nm by simply changing the initial pH of the aqueous phase in the reaction mixtures. Furthermore, the as-synthesized sol was taken as the starting material for studying the influences of the type of base catalysts on the solvent evaporation-induced three-dimensional (3D) self-assembly of SNSs. X-ray diffraction (XRD) and nitrogen adsorption-desorption are used to characterize the degree of packing of the resulting 3D arrays. The assembled SNSs with large interparticle mesopores with the diameter of ca. 8.1 nm and low packing fraction of ca. 66.1% are observed upon solvent evaporation of as-synthesized sol in the presence of primary amine. This indicates that SNSs are loosely packed, compared with the packing fraction of 74% for a face-centered cubic array of ideal hard spheres. In contrast, with the aid of an organic buffer or lysine as additives, the assembly of SNSs having smaller mesopores (ca. 3.9 nm) and higher packing fraction of 70.5-71.5% are achieved. It is suggested that the chemical additives with the ability to maintain relatively strong repulsive interaction until the final stage of evaporation play a vital role in the fabrication of well-ordered SNSs arrays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.