Abstract
Lithium intercalation compounds based on lithium manganese oxides are of great importance as positive electrodes for rechargeable lithium batteries. It is widely accepted that Li+ may be extracted (deintercalated) from such lithium manganese oxides accompanied by oxidation of Mn up to a maximum oxidation state of +4. However, it has been suggested recently that further Li+ removal may be possible. Among the mechanisms that have been proposed to charge balance the removal of Li+ are Mn oxidation beyond +4 or loss of O2-. To investigate this phenomenon we have selected Li2MnO3, a layered compound Li[Li1/3Mn2/3]O2 with a ready supply of mobile Li+ ions but with all Mn already in the +4 oxidation state. We show that a substantial quantity of Li (at least 1.39 Li) may be removed. At 55 °C this occurs exclusively by oxidation of the nonaqueous electrolyte, thus generating H+ which exchange one-for-one with Li+ to form Li2-xHxMnO3. The presence of H+ between the oxide layers results in a change of the layer stac...
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have