Abstract

In the stationary, aligned samples used in oriented sample (OS) solid-state NMR, (1)H-(1)H homonuclear dipolar couplings are not attenuated as they are in magic angle spinning solid-state NMR; consequently, they are available for participation in dipolar coupling-based spin-exchange processes. Here we describe analytically the pathways of (15)N-(15)N spin-exchange mediated by (1)H-(1)H homonuclear dipolar couplings. The mixed-order proton-relay mechanism can be differentiated from the third spin assisted recoupling mechanism by setting the (1)H to an off-resonance frequency so that it is at the "magic angle" during the spin-exchange interval in the experiment, since the "magic angle" irradiation nearly quenches the former but only slightly attenuates the latter. Experimental spectra from a single crystal of N-acetyl leucine confirm that this proton-relay mechanism plays the dominant role in (15)N-(15)N dilute-spin-exchange in OS solid-state NMR in crystalline samples. Remarkably, the "forbidden" spin-exchange condition under "magic angle" irradiation results in (15)N-(15)N cross-peaks intensities that are comparable to those observed with on-resonance irradiation in applications to proteins. The mechanism of the proton relay in dilute-spin-exchange is crucial for the design of polarization transfer experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.